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Abstract
We study the annual outcome of the Boat Race between Oxford and Cambridge and
forecast the 2020 edition which was cancelled due to the COVID-19 outbreak. We find a
strong presence of cyclical behaviour in the time series dynamics and model it through an
autoregressive process with score-driven innovations. The inclusion of explanatory variables
improve the fit of the time series further. In particular, the weight difference between the
rowers in the boats of the two universities is a statistically significant predictor. All model
computations are performed with the Time Series Lab software package and can be easily
replicated.
Key words: Boat race, Time Series Lab, Unobserved components, Time Series, Forecasting,
Score-driven models

1 Introduction
The Oxford and Cambridge Boat Race or “The Boat Race” is an annual rowing race between the
Cambridge University Boat Club and the Oxford University Boat Club. The race takes place on
the river Thames with open-weight rowing boats designed to take eight rowers and one cox. The
rivalry between the Oxford and Cambridge boat is traditionally intense. The competitive spirit
is at a very high level and it is common for Olympic rowers to compete in the event. The first
race was in 1829 and the race is held annually since 1856 with pauses due to both world wars.
However, due to the COVID-19 outbreak, the 2020 event was cancelled, something which had
not occured since WWII.

As of 2019, Cambridge won the men’s race 84 times and Oxford 79 times with one dead
heat in 1877. We refer to http://theboatrace.org for more information on this event. The
Boat Race has been modelled rigorously before by Mesters and Koopman (2015). In the current
study, the model computations are performed using the Time Series Lab - Score Edition software
package. Screen shots of the modelling steps in Time Series Lab are presented in the Appendix
so that all reported results can be easily replicated.

https://timeserieslab.com info@timeserieslab.com
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2 The model
The Boat Race time series consists of either two values: 0 (Oxford Win) and 1 (Cambridge Win).
We therefore assume that these observations are coming from the Bernoulli distribution with
probability density function (pdf)

p(yt|πt) = πyt
t (1− πt)1−yt (1)

where πt is a time-varying probability and yt ∈ {0, 1} for t = 1, . . . , T where T is the length
of the time series. We specify the unobserved time-varying probability πt as a function of the
dynamic process αt and the regression effect Xtβ, that is

πt+1 = f(θt), θt = αt +Xtβ,

αt+1 = ω + φ1αt + φ2αt−1 + κst,
(2)

where the link function f(·) is the logit link function so that πt takes values between 0 and 1, that
is 0 < πt < 1. The unknown coefficients include the constant ω, the autoregressive parameters
φ1 and φ2, the updating parameter κ, and the parameters in the k × 1 regression coefficient
vector β. The innovations in the autoregressive process are st, and the explanatory variables
are placed in the 1 × k vector Xt, for t = 1, . . . , T . All fixed coefficients are collected in the
parameter vector ψ which is estimated by maximum likelihood. The autoregressive parameters
φ1 and φ2 are constrained such that αt is a stationary process.

The driving force behind the updating equation in (2) is the scaled score innovation st as
given by

st = St · ∇t, ∇t = ∂ log p(yt|πt,Ft−1;ψ)
∂θt

, (3)

for t = 1, . . . , T and where ∇t is the score of the density p(yt|πt,Ft−1;ψ).The innovation st

can be regarded as a function of past observations. The information set Ft−1 consists of lagged
variables of πt and contains exogenous variables as well. Equations (1) - (3) form a score-driven
model in which the mechanism to update the time-varying parameter over time is the scaled score
of the likelihood function. These so called score-driven models, or Generalized Autoregressive
Score models, were proposed in the general case by Creal et al. (2013) and for time-varying
location/scale volatility models by Harvey (2013).

In Time Series Lab, a wide range of unobserved components can be included in θt. Among
these are non-stationary components like Trend and Seasonal, and stationary components like
Autoregressive processes of order p. The score-driven framework easily takes explanatory variables
into account as well, something which we will use for the modelling of the Boat Race time series.
Furthermore, Time Series Lab allows the user to choose from several probability distributions
p(yt|µt, σt) but for the Boat Race time series we will only use the pdf in (1).
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The score-driven approach provides a unified and consistent framework for introducing time-
varying parameters in a wide class of nonlinear models. Score-driven models encompass several
well-known models like the GARCH model of Engle (1982) and the ACD model of Engle and
Russell (1998). Time Series Lab - Score Edition specializes in models with unobserved components
driven by the score.

3 Data description
The annual Boat Race time series was downloaded from http://theboatrace.org. The series
consist of binary variables yt ∈ {0, 1} for t = 1, . . . , T with T=191. A zero denotes a win for
Oxford and a 1 denotes a win for Cambridge. Time t = 1 refers to the year 1829 in which the
first Boat Race was held and t = T is the year 2019. If the race is not held, for example due
to both world wars, the corresponding observation is a missing value. The missing values are for
the years 1830-1835, 1837, 1838, 1843, 1844, 1847, 1848, 1850, 1851, 1853, 1855, 1877 (dead
heat), 1915-1919 (WWI) and 1940-1945 (WWII).

Explanatory variables are included in the model. We mainly follow Mesters and Koopman
(2015) and include the average log difference in weight between the rowers in the Cambridge and
Oxford boats, the outcome of the coin toss, and the distance by which the previous race was
won. These three explanatory variables (k = 3) rely on information that is available just before
the race starts.

4 Results
Estimation results are presented in Table 1 from which we find that the AR(2) parameters of
the process (2) are estimated at φ1 = 1.6434, φ2 = −0.9023. An AR(2) process exhibits cyclical
behaviour if φ2

1 +4φ2 < 0, a condition that is satisfied for the Boat Race time series. The average
period of the cycle is

2π
arc cos(−φ1(1− φ2)/(4φ2))

(4)

which is 12.01 years for the Boat Race. Time Series Lab provides this information and prints the
following message on screen:

***** Information: the condition φ1
2 + 4φ2 < 0 is satisfied *****

As a result, the AR2 component for probability exhibits cyclical behaviour
with an average period of 12.01

The extracted probabilities are presented in Figure 1 and 2 with and without the influence of
the explanatory variable respectively. The autocorrelation function of the residuals and scores
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are presented in Figure 3. They show no significant residual autocorrelation, a sign of a properly
specified model. The regression coefficient β Diff Log W has a positive sign indicating that a
heavier boat is faster. This can be explained by the fact that heavier rowers have on average
more muscle mass and can have a stronger pull. This is backed up by light and heavy weight
rowing divisions where the heavy weights are faster on average.

Who would have won the Boat Race in 2020?

Looking at the point forecast of the probability for 2020, there is an 80% probability that Cam-
bridge would have won the Boat Race in 2020. It should be emphasized that this prediction is
made without the effect of the weight difference of the crew since that information is not available
to us. If Oxford had an weight advantage of 2kg per rower, the winning probability of Cambridge
for 2020 decreased to 74%. Vice versa, if Cambridge would have the same 2 kg weight difference,
their probability would increase to 86%. The probability that Cambridge would have won the
2020 edition of the Boat Race for a range of weight differences is given in Figure 4.
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Tables and Figures

Figure 1
Extracted probability with the inclusion of Xβ
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A dot at 0 denotes a win for Oxford and a dot at 1 denotes a win for Cambridge.

Figure 2
Extracted probability without the inclusion of Xβ
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A dot at 0 denotes a win for Oxford and a dot at 1 denotes a win for Cambridge.
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Figure 3
ACF of the Boat Race residuals and the score
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Table 1
Parameter estimates of the cyclical score-driven model

The table reports parameter estimates obtained from maximizing the likelihood function of the model in (1) -
(3) with k = 3 explanatory variables. P-values should be taken with caution. They are directly interpretable for
regression coefficients but, due to boundary issues, can give misleading results for parameters corresponding to
dynamic components or variances.

Parameter type Value Sig.Lvl Asymp.SE p-value -1.96 SE +1.96 SE

Logit probability
AR2 ω 0.0503 0.0782 0.5212 -0.1031 0.2036
AR2 κ 0.0763 * 0.0309 0.0144 0.0158 0.1368
AR2 φ1 1.6412 *** 0.0258 0.0000 1.5905 1.6919
AR2 φ2 -0.8976 *** 0.0720 0.0000 -1.0386 -0.7565
β Winner Toss -0.1112 0.3639 0.7602 -0.8245 0.6020
β Diff Log W 18.2140 ** 6.2221 0.0038 6.0187 30.4093
β Winning Dist.. -0.0114 0.0326 0.7268 -0.0754 0.0526

* p < 0.05; ** p < 0.01; *** p < 0.001
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Table 2
Parameter estimates of the cyclical score-driven model

The table reports parameter estimates obtained from maximizing the likelihood function of the model in (1)
- (3) with k = 1 significant explanatory variables. P-values should be taken with caution. They are directly
interpretable for regression coefficients but, due to boundary issues, can give misleading results for parameters
corresponding to dynamic components or variances.

Parameter type Value Sig.Lvl Asymp.SE p-value -1.96 SE +1.96 SE

Logit probability
AR2 ω 0.0232 0.0522 0.6565 -0.0790 0.1255
AR2 κ 0.0714 * 0.0284 0.0129 0.0157 0.1272
AR2 φ1 1.6502 *** 0.0226 0.0000 1.6059 1.6945
AR2 φ2 -0.9094 *** 0.0695 0.0000 -1.0456 -0.7732
β Diff Log W 18.4330 ** 6.2404 0.0035 6.2018 30.6642

* p < 0.05; ** p < 0.01; *** p < 0.001

Table 3
In-sample model fit for a range of model specifications

The table reports in-sample model fit for a range of model specifications. All models are estimated with Time
Series Lab - Score Edition and all dynamic components are driven by the score. The Likelihood ratio (LR) test is
defined as −2 (Log Li − Log Lb) where Log Li is the smaller (nested) model of the benchmark model Log Lb.

Model description Log L # par LR RMSE MAE

Distribution: Bernoulli

Probability: logit(AR1) -105.02 3 18.04∗∗∗ 0.476 0.453
Probability: logit(AR1 + Xβ) -100.00 4 5.86∗ 0.458 0.421
Probability: logit(AR2) -102.37 4 12.74∗∗∗ 0.468 0.443
Probability: logit(AR2 + Xβ) -97.07 5 0.451 0.410

* p < 0.05; ** p < 0.01; *** p < 0.001
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Figure 4
Probability of Cambridge winning the Boat Race 2020
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Time Series Lab - Screen Shots
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