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Abstract

We study the behavior of the Volatility Index (VIX) time series in the period leading up
to the COVID-19 outbreak. Time-varying location/scale models are used to extract a
range of unobserved components from the VIX time series. The time-varying unobserved
components are driven by the score of the predictive density. These so called score-driven
models have proven to be powerful in extracting unobserved components like autoregressive
processes and seasonal patterns. A range of model specifications is used to forecast the
VIX in the COVID-19 period that spans the first quarter of 2020. Explanatory variables
are used to improve in-sample model fit and out-of-sample forecast accuracy. All model
computations are carried out with the Time Series Lab software package.
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1 Introduction

The VIX, also called fear index or fear gauge, is a measure of the overall market sentiment and
reflects the investors’ risk appetite. The VIX is calculated by the Chicago Board Options Exchange
(CBOE) and estimates implied volatility by aggregating the weighted prices of S&P 500 put and
call options over a wide range of strike prices. A detailed description of the calculation of the
VIX is given by CBOE in their white paper, see CBOE (2019). The VIX is quoted in percentage
points and represents the expected annualized change in the S&P 500 index over the next 30-day
time period within a one standard deviation confidence interval. However, VIX today more often
than not overstates the level of actual volatility experienced in the next 30 days, see Edwards
and Preston (2017a) and Edwards and Preston (2017b). Two explanations have been given, the
first one stems from a behavioral finance perspective. Risk averse investors are willing to pay
a premium to hedge against risk. The second one comes from an option pricing perspective.
Implied volatility takes into account rare events that occur in the (often non-Gaussian) tails of

∗The author is grateful for comments from Paolo Gorgi, Siem Jan Koopman, and Binte Groen. All errors are
his own.

https://timeserieslab.com info@timeserieslab.com



R. Lit Time Series Lab

the distribution, while realized volatility will only include rare events if they have occurred in the
period for which the realized volatility is calculated. Since on average rare events will only occur
with a small frequency, realized volatility tends to underestimate the potential for large losses
most of the time.

In this paper we present our study into the behavior of the Volatility Index (VIX) time series and
forecast daily closing levels of the VIX for the first quarter of 2020. This time period was chosen
deliberately because in March 2020 the VIX fluctuated as never seen before due to the COVID-
19 outbreak. We focused on time-varying location/scale models with the aim of identifying the
model with the most accurate forecast of the VIX in turbulent times. With accurate forecasts of
implied volatility, market participants could potentially form profitable option trading strategies,
something which can have implications about the efficiency of the option markets as well. The
VIX data and additional explanatory variables of this research have a daily frequency, which means
that we calculate forecasts for day t+1 with information up to and including time t. The author
of this paper is fully aware that in today’s high-frequency markets and 24h economy, forecasting
one day ahead for a liquid product is a long forecast horizon and by the time the forecast period is
reached, new information has already become available that could potentially improve forecasts.
However, if statistically significant conclusions can be drawn from forecasts one day ahead, it can
assist us in decision making processes at the current day.

We modelled the VIX time series with a wide range of probability distributions, dynamic com-
ponents, and explanatory variables and compared these models on in-sample model fit and out-of-
sample forecast accuracy. All model calculations in this paper were carried out with the software
package Time Series Lab - Score Edition which is available from https://timeserieslab.com

for free and can therefore be easily replicated. Screen captures of the software are presented in
the online supplement to highlight the chosen settings in each step of the modelling process.

For more information on modelling and forecasting of implied volatility, we refer to Fernandes
et al. (2014), Koopman et al. (2005), Psaradellis and Sermpinis (2016), Konstantinidi et al.
(2008), Blair et al. (2001), Blair et al. (2010), Harvey and Whaley (1992) and the references in
these papers.

2 The model

The VIX time series is assumed to have observations coming from a probability distribution
p(yt|µt, σt) with time-varying location µt and scale σt for t = 1, . . . , T where T is the length of
the time series. The mechanism to update the location and scale over time is the scaled score
of the likelihood function. These so called score-driven models, or Generalized Autoregressive
Score models, were proposed in their full generality by Creal et al. (2013) and for time-varying
location/scale volatility models by Harvey (2013). The score-driven approach provides a unified
and consistent framework for introducing time-varying parameters in a wide class of nonlinear
models. Score-driven models encompass several well-known models like the GARCH model of
Engle (1982) and the ACD model of Engle and Russell (1998). Time Series Lab - Score Edition
specializes in models with unobserved components driven by the score.

Let the unobserved time-varying parameter vector αt be updated over time using the following
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updating function

αt+1 = ω +

q∑
i=1

Aist−i+1 +

p∑
j=1

Bjαt−j+1,

where ω is a vector of constants, A and B are fixed coefficient matrices and st is the scaled score
function which is the driving force behind the updating equation. The unknown coefficients ω, A
and B depend on the static parameter vector ψ which is estimated by the method of Maximum
Likelihood. The definition of st is

st = St · ∇t, ∇t =
∂ log p(yt|αt,Ft−1;ψ)

∂αt
,

for t = 1, . . . , T, and where∇t is the score vector of the density p(yt|αt,Ft−1;ψ).The information
set Ft−1 usually consists of lagged variables of αt and yt but can contain exogenous variables as
well. The connection between the distribution parameters µt and σt is made by the link function
f(·) in the following way

µt = f(Zµ
t αt), σt = f(Zσ

t αt),

where at time t, the selection matrices Zµ
t and Zσ

t select components from the unobserved
parameter vector αt.

In Time Series Lab, a wide range of unobserved components can be included in αt. Among
these are non-stationary components like Trend and Seasonal, and stationary components like
Autoregressive processes of order p. The score-driven framework easily takes explanatory variables
into account as well, something which we will use for the modelling of the VIX time series.
Furthermore, Time Series Lab allows the user to choose from several probability distributions
p(yt|µt, σt).

3 Data description

The daily VIX time series was downloaded from Yahoo finance (https://finance.yahoo.com)
and descriptive statistics are presented in Table 1. Note that the downloaded raw data has
weekends and banking holidays removed so that no missing values are present in the data. To
be able to model a possible weekly, or biweekly pattern we added missing values for the banking
holidays so that each 5 consecutive data points constitutes exactly 1 week. The VIX time series
is presented in Figure 1 for the full sample and the first quarter of 2020. Our approach is to
estimate model parameters from period 1 and use these to forecast period 2. This poses several
challenges since both periods differ strongly when it comes to their statistical characteristics. For
example, mean and standard deviation are much higher in period 2. Also, the data is skewed
which is somewhat alleviated after taking logs from the series but not completely. Furthermore,
kurtosis switches from excess kurtosis (> 3) in period 1 to leptokurtic (< 3) in period 2. Most
noteworthy is the strong rejection of a unit root in period 1 and the strong acceptance of a unit
root in period 2.

The following lag-1 explanatory variables were used in an attempt to increase forecast ac-
curacy: the κ-day S&P 500 continuously compounded positive returns and negative returns for
κ = 1, 5, 10, 20. The κ-day continuously compounded return of WTI Crude oil price. The
S&P 500 volume first difference of logs. The first difference of the logarithm of the foreign
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exchange value of the US dollar against the Euro, British pound, Japanese yen, and Bitcoin.
The spread between 10-Year and 3-month Treasury Constant Maturities (credit spread). The
difference between the three-month Treasury bill and the three-month LIBOR based in US dollars
(TED spread) and dummy variables for the beginning and end of the trading month.

Explanatory variables were downloaded from Yahoo finance and the Federal Reserve Economic
Data base (https://fred.stlouisfed.org).

4 Results

The ACF of the VIX time series shows a slowly decaying pattern while the PACF shows 2 significant
lags. We therefore started our analysis with a benchmark model consisting of a time-varying
location that consists of an AR2 process and a constant scale parameter. The most complex
model has a location parameter that is decomposed into an AR2 process, an AR1 process, a
weekday seasonal specification, explanatory variables, and a scale parameter consisting of an
AR1 process. All components, except the explanatory variables component, are driven by the
score as described in Section (2). In-sample model fit and out-of-sample forecast accuracy is
reported and compared among other models including simple benchmark models in Table 2. The
losses were evaluated by the Diebold and Mariano (1995) statistic to test for equal predictive
accuracy. A higher (in-sample) log likelihood value results in almost all cases in lower in-sample
loss, however, this is not true for out-of-sample forecast accuracy. The more complex and better
fitting in-sample models are often not better at forecasting as indicated by the higher out-of-
sample losses. This can be explained by overfitting of the time series, a phenomenon where simple
time series models outperform more complex models when it comes to forecasting. We discuss
estimation results per category.

Distribution

Looking at point forecasts (RMSE, MAE, MAPE), the Gaussian distribution outperforms the
Student t and Generalized Error Distribution (GED) in several cases and is never significantly
worse.

This strong performance on point forecasting is in contrast to the performance when the full
distribution is taken into account, e.g. better tail fitting behavior. The in-sample log likelihood
value is much higher for the Student t distribution, a clear sign of fatter tails compared to the
Gaussian distribution. The parameter estimates are presented in Table 3 from which we see that
the degrees of freedom parameter is estimated at 7.40 indicating fatter tails than the Gaussian
distribution. The log loss function, which is defined as minus the log of the predictive density is
also lower for the Student t models.

These results might be surprising at first but are actually in line with theory, since the Gaussian
distribution minimizes the squared errors. It is for the practitioner to decide which is valued higher,
point forecasts or density forecasts.

Autoregressive components

Time Series Lab allows the inclusion of several unobserved components. The extracted compo-
nents for location and scale are presented in Figure 2 and 3. We note that the signal for location
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is decomposed into a persistent AR2 processes (φ1+φ2 = 0.996) and an AR1 process that takes
the short(er) run shocks into account albeit relatively persistent as well with (φ = 0.863). The
sum of two autoregressive components can be seen as a long memory process, see (Harvey, 2013,
p91) for long memory in location/scale models and Fernandes et al. (2014) for long memory in
VIX modelling.

Seasonal

A small but significant weekday seasonal is extracted from the VIX time series. Table 2 shows
the parameters of the seasonal components. First, the seasonal is not time-varying since the
updating parameter (seasonal κ) was estimated close to zero and subsequently fixed at zero
during re-estimation. Second, there is a weekday effect in which the VIX is on average slightly
higher on Monday and Tuesday and lower on Friday. The parameters for Wednesday and Thursday
are not significantly different from zero. Note that the seasonal components must sum to zero for
identification and therefore the Friday parameter can be deduced from the parameters belonging
to the rest of the week. We refer to Figure 2 for a plot of the weekday pattern.

Explanatory variables

After optimizing the model with the full set of explanatory variables, corresponding standard
errors were calculated. The least significant explanatory variable was removed and the process
of estimating and calculating standard errors was repeated until a significant set of explanatory
variables remained. The final model consists of the explanatory variables S&P negative return
lag-1, WTI Close return lag-1 (oil price), and a dummy for the beginning and end of the trading
month. We refer to Table 2 for the parameter estimates and standard errors of the explanatory
variables. The negative sign in front of the coefficients corresponding to S&P500 negative returns
lag1 and WTI closing price lag1 show an inverse relationship with the VIX.

Model extensions

The inclusion of multiple lags of the autoregressive processes was tried for both location and
scale but without improvement. Furthermore, a seasonal pattern could not be extracted from the
scale parameter. Finally, multiple lags of the score were included in the model as well without
improvement on model fit or forecast-accuracy.

5 Conclusion

We used the time series package Time Series Lab - Score Edition to extract signal from the VIX
time series. We modelled the time-varying location and scale of the model for several probability
distributions and combinations of unobserved components. Especially the time-varying location
parameter was a rich source of information since two autoregressive processes and a weekday
seasonal pattern was extracted.

The Gaussian distribution outperformed the Student t and Generalized Error Distribution
(GED) when it comes to point forecasts (RMSE, MAE, MAPE). This strong performance on
point forecasting is in contrast to the performance when the full distribution is taken into account.
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These results are in line with theory since the Gaussian distribution minimizes the squared errors.
We found long memory in the VIX time series due to the 2 persistent AR process that were
extracted. A small but significant weekday seasonal is extracted from the VIX time series as well.
There is a weekday effect in which the VIX is on average slightly higher on Monday and Tuesday
and lower on Friday. The final model consists of the explanatory variables S&P negative return
lag-1, WTI Close return lag-1, and a dummy for the beginning and end of the trading month.
The negative sign in front of the coefficients corresponding to S&P500 negative returns lag1 and
WTI closing price lag1 show an inverse relationship with the VIX.
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Tables and Figures

Figure 1

VIX closing levels
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The figure shows closing levels of the VIX. Top panel: full sample. Bottom panel: COVID-19 outbreak period.
The top panel clearly shows the sharp rise of the VIX in a very short time period at the end of the sample.
Equal levels were reached during the financial crisis however the period leading up to the financial crisis was more
turbulent than the period leading up to the COVID-19 jump. The bottom panel shows that the VIX calmly started
the beginning of 2020 and than abruptly rose.
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Table 1

Descriptive statistics of the VIX time series

The table reports descriptive statistics of the VIX time series for the closing price and log closing price. Period 1
ranges from 05-01-2004 to 31-12-2019. Period 2 spans the first quarter of 2020 in which the COVID-19 outbreak
took place (01-01-2020 to 31-03-2020). The p-values of the Jarque-Bera test for normality and the Augmented
Dickey-Fuller (ADF) test for unit root are reported. The number of lags in the ADF test are selected using the
Bayesian information criterion.

Closing price Log closing price

Characteristic Period 1 Period 2 Full sample Period 1 Period 2 Full sample

Mean 18.22 31.22 18.42 2.83 3.21 2.83
Standard dev. 8.58 22.05 9.08 0.36 0.67 0.37
Median 15.60 16.73 15.61 2.75 2.82 2.75
Minimum 9.14 12.10 9.14 2.21 2.49 2.21
Maximum 80.86 82.69 82.69 4.39 4.42 4.42
Kurtosis 13.41 2.27 13.74 4.57 1.59 4.73
Skewness 2.75 0.88 2.84 1.17 0.50 1.23

T 4172 66 4238 4172 66 4238
Missings 146 4 150 146 4 150
Jarque-Bera 0.0000 0.0068 0.0000 0.0000 0.0164 0.0000
ADF 0.0002 0.9502 0.0019 0.0000 0.9516 0.0000
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Table 2

In-sample and out-of-sample results for a range of model specifications

The table reports in-sample model fit and out-of-sample forecast results for a wide range of model specifications.
All models are estimated with Time Series Lab - Score Edition. All dynamic components are driven by the
score. The lowest loss per category is given a blue shade. The Diebold and Mariano (1995) statistic is used to
assess forecast accuracy among competing models. The second Student t model with Location: exp(AR2) and
Scale: exp(AR1) is set as benchmark model. All out-of-sample losses with a dagger sign † next to them perform
significantly worse compared to the benchmark model.

In-sample Out-of-sample

Model description Log L RMSE MAE MAPE RMSE MAE MAPE Log loss

Distribution: Gaussian
Location: exp(AR2)
Scale: constant

-7895.50 1.72 1.02 5.18 5.91 3.37 8.64 7.36†

Location: exp(AR2)
Scale: exp(AR1)

-6687.61 1.74 1.01 5.13 6.05 3.40 8.63 2.91

Location: exp(AR2 + AR1)
Scale: exp(AR1)

-6649.01 1.74 1.00 5.04 6.49 3.44 8.55 2.94

Location: exp(AR2 + AR1 + Seas(5))
Scale: exp(AR1)

-6589.67 1.74 0.99 4.97 6.47 3.53 8.80 2.91

Location: exp(AR2+AR1+Seas(5)+Xβ)
Scale: exp(AR1)

-6536.45 1.69 0.98 4.93 6.27 3.68 9.09 2.90

Distribution: Student t
Location: exp(AR2)
Scale: constant

-7293.05 2.05 1.11 5.49 18.14† 11.09† 21.89† 7.15†

Location: exp(AR2)
Scale: exp(AR1)

-6306.96 1.80 1.04 5.19 5.96 3.33 8.86 2.61

Location: exp(AR2 + AR1)
Scale: exp(AR1)

-6270.03 1.83 1.03 5.13 6.70† 3.64 9.34 2.65

Location: exp(AR2 + AR1 + Seas(5))
Scale: exp(AR1)

-6209.58 1.83 1.03 5.06 6.64† 3.68 9.49 2.66

Location: exp(AR2+AR1+Seas(5)+Xβ)
Scale: exp(AR1)

-6162.03 1.80 1.01 5.00 7.16† 4.09† 10.08† 2.69

Distribution: GED
Location: exp(AR2)
Scale: constant

-7485.44 1.82 1.08 5.50 7.11† 3.99† 10.20† 6.33†

Location: exp(AR2)
Scale: exp(AR1)

-6464.19 1.81 1.04 5.24 6.00 3.26 8.60 2.71

Location: exp(AR2 + AR1)
Scale: exp(AR1)

-6428.11 1.85 1.04 5.19 6.57 3.43 8.83 2.74

Location: exp(AR2 + AR1 + Seas(5))
Scale: exp(AR1)

-6367.55 1.84 1.03 5.11 6.54 3.42 8.83 2.74

Location: exp(AR2+AR1+Seas(5)+Xβ)
Scale: exp(AR1)

-6317.81 1.78 1.01 5.04 7.11† 3.95† 9.64 2.78
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Table 3

Parameter estimates for the Student t model

The table reports parameter estimates obtained from maximizing the likelihood function of the most complex
Student t model with specification Location: exp(AR2+AR1+Seas(5)+Xβ) and Scale: exp(AR1). P-values
should be taken with caution. They are directly interpretable for regression coefficients but, due to boundary
issues, can give misleading results for parameters corresponding to dynamic components or variances.

Parameter type Value Sig.Lvl Asymp.SE p-value -1.96 SE +1.96 SE

Log location
AR2 ω 0.0091 *** 0.0015 0.0000 0.0062 0.0120
AR2 κ 0.3279 *** 0.0422 0.0000 0.2451 0.4107
AR2 φ1 1.0072 *** 0.0003 0.0000 1.0066 1.0078
AR2 φ2 -0.0113 0.0692 0.8703 -0.1470 0.1244
init 2.8509 *** 0.0525 0.0000 2.7480 2.9538
AR1 (2nd) κ 0.4898 *** 0.0434 0.0000 0.4048 0.5748
AR1 (2nd) φ 0.8628 *** 0.0316 0.0000 0.8009 0.9247
seasonal κ 0.0000
init seasonal 1 0.0075 *** 0.0010 0.0000 0.0056 0.0094
init seasonal 2 0.0050 *** 0.0011 0.0000 0.0029 0.0071
init seasonal 3 0.0000
init seasonal 4 0.0000
init seasonal 5 -0.0125
β dummy em 0.0184 *** 0.0034 0.0000 0.0116 0.0251
β dummy bm 0.0084 * 0.0035 0.0158 0.0016 0.0153
β S&P neg return la.. -0.3428 * 0.1571 0.0292 -0.6508 -0.0348
β WTI Close lag1 -0.2426 *** 0.0314 0.0000 -0.3041 -0.1812

Log scale
AR1 ω 0.0052 0.0036 0.1483 -0.0019 0.0123
AR1 κ 0.1536 *** 0.0107 0.0000 0.1327 0.1746
AR1 φ 0.9259 *** 0.0091 0.0000 0.9081 0.9437

Additional
Degrees of freedom 7.4019 *** 0.7310 0.0000 5.9691 8.8347

* p<0.05; ** p<0.01; *** p<0.001
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Figure 2

Decomposition of VIX level into AR2, AR1, and seasonal component
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Figure 3

Time-varying standard deviation of VIX time series
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